In the beginning..........
The timetable of evolution
http://advances.sciencemag.org/conte.../e1603076.full
Abstract
Update 19/05/2017
Origin of Human Genus May Have Occurred By Chance
http://neurosciencenews.com/environment-evolution-7240/
Update 04/08/2017
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa
http://elifesciences.org/content/4/e09560
Abstract
https://en.wikipedia.org/wiki/Homo_naledi
Newest member of human family is surprisingly young
http://science.sciencemag.org/conten...et_cid=1321806
Summary
Update 11/05/2017
World’s oldest Homo sapiens fossils found in Morocco
http://www.sciencemag.org/news/2017/...et_cid=1370181
Update 08/06/2017
The timetable of evolution
http://advances.sciencemag.org/conte.../e1603076.full
Abstract
The integration of fossils, phylogeny, and geochronology has resulted in an increasingly well-resolved timetable of evolution. Life appears to have taken root before the earliest known minimally metamorphosed sedimentary rocks were deposited, but for a billion years or more, evolution played out beneath an essentially anoxic atmosphere. Oxygen concentrations in the atmosphere and surface oceans first rose in the Great Oxygenation Event (GOE) 2.4 billion years ago, and a second increase beginning in the later Neoproterozoic Era [Neoproterozoic Oxygenation Event (NOE)] established the redox profile of modern oceans. The GOE facilitated the emergence of eukaryotes, whereas the NOE is associated with large and complex multicellular organisms. Thus, the GOE and NOE are fundamental pacemakers for evolution. On the time scale of Earth’s entire 4 billion–year history, the evolutionary dynamics of the planet’s biosphere appears to be fast, and the pace of evolution is largely determined by physical changes of the planet. However, in Phanerozoic ecosystems, interactions between new functions enabled by the accumulation of characters in a complex regulatory environment and changing biological components of effective environments appear to have an important influence on the timing of evolutionary innovations. On the much shorter time scale of transient environmental perturbations, such as those associated with mass extinctions, rates of genetic accommodation may have been limiting for life.
The final stop in this whirlwind tour of the evolutionary timetable is ourselves. The ages of hominin (the lineage leading to Homo sapiens, sister to chimps and bonobos) fossils are estimated on the basis of high-resolution geochronology (mostly 40Ar/39Ar) on ash beds intercalated among fossiliferous sediments, supplemented by a well-calibrated magnetic stratigraphy. Although rare, early hominins have been found in several localities in Africa, with ages of around 6 million years, and a recent discovery suggests human-gorilla divergence as early as 8 Ma (83). In turn, the oldest fossil attributed to the genus Homo is a mandible with teeth, found in siltstone 10 m above a 2.822 ± 0.006–Ma ash bed but older than a superjacent tuff dated at 2.669 ± 0.011 Ma (84); the fossil in question combines features characteristic of Homo and Australopithecus, raising the question of how we should define our own genus (85). In Kenya and Ethiopia, possible Homo erectus bones have been discovered just below an ash bed dated at 1.87 ± 0.02 Ma (86, 87), and both a more securely identified H. erectus cranium and Acheulian stone tools (generally associated with H. erectus in Africa) occur just above a 1.74 ± 0.06–Ma ash bed (88). H. erectus remains in Asia independently indicate an origin of more than 1.7 Ma (89, 90). Anatomically modern humans (Homo sapiens sapiens) emerged after 200,000 years ago [constrained by 40Ar/39Ar ages of 196 ± 2 thousand years on volcanic ash within a fossiliferous unit (91)], dispersing to the Levant by 100,000 years ago and, later, around the world. Uncertainty in dates for human dispersal reflects both the limited availability of fossils and differing opinions about what constitutes a modern human [summarized by Grove (92)], but recent molecular clock analyses suggest that the ancestors of modern Eurasian populations migrated from Africa 50,000 to 70,000 years ago, with Papuan genomes suggesting a small admixture of genes from a population that migrated earlier but is now extinct (93–95). From there, it is but a geologically short hop to agriculture (ca. 11,500 years ago) and onward to the Industrial Age technologies and exponential population growth that has established our species’ unprecedented ecological footprint on Earth system.
Origin of Human Genus May Have Occurred By Chance
http://neurosciencenews.com/environment-evolution-7240/
A GW researcher’s paper challenges the claim that the genus Homo originated in response to environmental changes.
An often cited claim that humans, who are smarter and more technologically advanced than their ancestors, originated in response to climate change is challenged in a new report by a Center for the Advanced Study of Human Paleobiology researcher at George Washington University.
Many scientists have argued that an influx, described as a “pulse,” of new animal species appear in the African fossil record between 2.8 and 2.5 million years ago, including our own genus Homo. Experts believe it takes a broad-scale event like global climate change to spark the origination of so many diverse new species. However, W. Andrew Barr, a visiting assistant professor of anthropology, published a report that says it’s possible the pulse of new species could have occurred by chance and might not be directly related to climate change.
It is generally accepted that when major environmental changes occur, some species will go extinct and others will originate, which can create a cluster or pulse of new species in the fossil record. However, there is not a set definition of what is considered a pulse, so experts have disagreed about which clusters constitute meaningful events and which can be explained as random fluctuations.
Dr. Barr used computer simulation to model what the fossil record might look like over time in the absence of any climate change and found clusters of species originations that were of similar magnitude to the clusters observed in the fossil record. This means random patterns are likely under-credited for their role in speciation fluctuation, he said.
Dr. Barr’s findings mean scientists may need to rethink widely-accepted ideas about why human ancestors became smarter and more sophisticated.
“The idea that our genus originated more than 2.5 million years ago as part of a turnover pulse in direct response to climate change has a deep history in paleonthropology,” Dr. Barr said. “My study shows that the magnitude of that pulse could be caused by random fluctuations in speciation rates. One implication is that we may need to broaden our search for why our genus arose at that time and place.”
He compared the pattern to flipping a coin. If you flip a coin 100 times, you would expect to record 50 heads and 50 tails. However, if you are only looking at 10 coin flips, you could see a greater imbalance, instead recording seven heads and only three tails. This would even out over time, but in the short-run, you could see clusters of these independent coin flips, he said.
An often cited claim that humans, who are smarter and more technologically advanced than their ancestors, originated in response to climate change is challenged in a new report by a Center for the Advanced Study of Human Paleobiology researcher at George Washington University.
Many scientists have argued that an influx, described as a “pulse,” of new animal species appear in the African fossil record between 2.8 and 2.5 million years ago, including our own genus Homo. Experts believe it takes a broad-scale event like global climate change to spark the origination of so many diverse new species. However, W. Andrew Barr, a visiting assistant professor of anthropology, published a report that says it’s possible the pulse of new species could have occurred by chance and might not be directly related to climate change.
It is generally accepted that when major environmental changes occur, some species will go extinct and others will originate, which can create a cluster or pulse of new species in the fossil record. However, there is not a set definition of what is considered a pulse, so experts have disagreed about which clusters constitute meaningful events and which can be explained as random fluctuations.
Dr. Barr used computer simulation to model what the fossil record might look like over time in the absence of any climate change and found clusters of species originations that were of similar magnitude to the clusters observed in the fossil record. This means random patterns are likely under-credited for their role in speciation fluctuation, he said.
Dr. Barr’s findings mean scientists may need to rethink widely-accepted ideas about why human ancestors became smarter and more sophisticated.
“The idea that our genus originated more than 2.5 million years ago as part of a turnover pulse in direct response to climate change has a deep history in paleonthropology,” Dr. Barr said. “My study shows that the magnitude of that pulse could be caused by random fluctuations in speciation rates. One implication is that we may need to broaden our search for why our genus arose at that time and place.”
He compared the pattern to flipping a coin. If you flip a coin 100 times, you would expect to record 50 heads and 50 tails. However, if you are only looking at 10 coin flips, you could see a greater imbalance, instead recording seven heads and only three tails. This would even out over time, but in the short-run, you could see clusters of these independent coin flips, he said.
Similarly, fluctuations in turnover in Dr. Barr’s model are pronounced, but are caused purely by random processes.
“The idea the the origin of Homo is part of a climate-caused turnover pulse doesn’t really bear out when you carefully look at the evidence and compare it against other possible explanations,” Dr. Barr said.
This research challenges scientists to be careful about the stories they tell about the history of human adaption, Dr. Barr said. Traits that make humans different from our ancestors, like larger brains and greater technological sophistication, could have arisen for a variety of reasons, he said.
“We can sit in the present and tell stories of the past that make sense of our modern day adaptations,” he said. “But these could have evolved for reasons we don’t know.”
“The idea the the origin of Homo is part of a climate-caused turnover pulse doesn’t really bear out when you carefully look at the evidence and compare it against other possible explanations,” Dr. Barr said.
This research challenges scientists to be careful about the stories they tell about the history of human adaption, Dr. Barr said. Traits that make humans different from our ancestors, like larger brains and greater technological sophistication, could have arisen for a variety of reasons, he said.
“We can sit in the present and tell stories of the past that make sense of our modern day adaptations,” he said. “But these could have evolved for reasons we don’t know.”
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa
http://elifesciences.org/content/4/e09560
Abstract
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.
Newest member of human family is surprisingly young
http://science.sciencemag.org/conten...et_cid=1321806
Summary
A nearly complete skull of a mysterious member of the human family was unveiled this week at the same time as researchers reported a surprisingly recent age for this ancient cave dweller in South Africa. The new fossils of Homo naledi reinforce a picture of a small-brained, small-bodied creature, which makes the dates reported in a paper in eLife all the more startling: 236,000 to 335,000 years ago. That means a creature reminiscent of much earlier human ancestors such as H. habilis lived at the same time as modern humans were emerging in Africa and Neandertals were evolving in Europe.
World’s oldest Homo sapiens fossils found in Morocco
http://www.sciencemag.org/news/2017/...et_cid=1370181
For decades, researchers seeking the origin of our species have scoured the Great Rift Valley of East Africa. Now, their quest has taken an unexpected detour west to Morocco: Researchers have redated a long-overlooked skull from a cave called Jebel Irhoud to a startling 300,000 years ago, and unearthed new fossils and stone tools. The result is the oldest well-dated evidence of Homo sapiens, pushing back the appearance of our kind by 100,000 years.
“This stuff is a time and a half older than anything else put forward as H. sapiens,” says paleoanthropologist John Fleagle of the State University of New York in Stony Brook.
The discoveries, reported in Nature, suggest that our species came into the world face-first, evolving modern facial traits while the back of the skull remained elongated like those of archaic humans. The findings also suggest that the earliest chapters of our species’s story may have played out across the African continent. “These hominins are on the fringes of the world at that time,” says archaeologist Michael Petraglia of the Max Planck Institute for the Science of Human History in Jena, Germany.
“This stuff is a time and a half older than anything else put forward as H. sapiens,” says paleoanthropologist John Fleagle of the State University of New York in Stony Brook.
The discoveries, reported in Nature, suggest that our species came into the world face-first, evolving modern facial traits while the back of the skull remained elongated like those of archaic humans. The findings also suggest that the earliest chapters of our species’s story may have played out across the African continent. “These hominins are on the fringes of the world at that time,” says archaeologist Michael Petraglia of the Max Planck Institute for the Science of Human History in Jena, Germany.
Comment